紙媒体で管理するとなくなりがちなのでブログで進捗などを管理することにしました
※殆どの記事は自分自身のためだけにかいています.他人に見せられるレベルには至っていません...

【scikit-learn】Ridge回帰【その2】

RidgeCVというモデルがあるらしい.
CVとはCrossVaridationのことで,正則化パラメータαに交差検証を用いる方法である.
これによって最適なαを自動で求めてくれるそう.

reg = linear_model.RidgeCV(alpha= [0.1, 1.0, 10.0])
reg.fit(X_train, y_train)
reg.alpha_

でできる.
デフォルトではleave-out-cross-varidation(LOOCV,一個抜き交差検証)で正則化パラメータの候補集合から1つをテスト事例として抜き,残りをトレーニングデータとして使う.
これを全事例が一回ずつテスト事例となるように検証を繰り返す.